8 research outputs found

    New Generation Sensor Web Enablement

    Get PDF
    Many sensor networks have been deployed to monitor Earth’s environment, and more will follow in the future. Environmental sensors have improved continuously by becoming smaller, cheaper, and more intelligent. Due to the large number of sensor manufacturers and differing accompanying protocols, integrating diverse sensors into observation systems is not straightforward. A coherent infrastructure is needed to treat sensors in an interoperable, platform-independent and uniform way. The concept of the Sensor Web reflects such a kind of infrastructure for sharing, finding, and accessing sensors and their data across different applications. It hides the heterogeneous sensor hardware and communication protocols from the applications built on top of it. The Sensor Web Enablement initiative of the Open Geospatial Consortium standardizes web service interfaces and data encodings which can be used as building blocks for a Sensor Web. This article illustrates and analyzes the recent developments of the new generation of the Sensor Web Enablement specification framework. Further, we relate the Sensor Web to other emerging concepts such as the Web of Things and point out challenges and resulting future work topics for research on Sensor Web Enablement

    On the C∗C^*-algebraic approach to topological phases for insulators

    No full text
    International audienceThe notion of a topological phase of an insulator is based on the concept of homotopy between Hamiltonians. It therefore depends on the choice of a topological space to which the Hamiltonians belong. We advocate that this space should be the C∗C^* -algebra of observables. We relate the symmetries of insulators to graded real structures on the observable algebra and classify the topological phases using van Daele’s formulation of K-theory. This is related but not identical to Thiang’s recent approach to classify topological phases by K-groups in Karoubi’s formulation
    corecore